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The double-complex function method is used to find a multiple Lax pair for the 
double Ernst equation. Then multiple hidden symmetries and multiple infinite 
sequences of nonlocal conserved charges are obtained. The result of Papachristou 
and Harrison is contained in our result. 

Papachristou and Harrison (1994) proposed a Lax pair which unifies 
some symmetries and integrability properties of  the stationary axisymmetric 
vacuum gravitational field (SAVGF) equations. By using this Lax pair some 
new hidden symmetries and infinite sequences of nonlocal conserved charges 
can be constructed. However, in this scheme only ordinary (complex) numbers 
were used. According to the double-complex function method (Zhong, 1985, 
1990), if the double symmetry of the SAVGF equations is fully used, addi- 
tional hidden symmetries may be found. In the present article, we use the 
double-complex function method to extend the scheme of  Papachristou and 
Harrison (1994) into a multiple form and obtain multiple hidden symmetries 
as well as multiple infinite sequences of nonlocal conserved charges for the 
SAVGF; the result of Papachristou and Harrison (1994) is contained in ours. 

First we review some relevant notations and results of the double- 
complex method (Zhong, 1985). Let J denote the double imaginary unit, i.e., 
J = i (i2 = - 1 )  or J = ~ (~2 = +1,  ~ :/: _+1). When a real series E a ,  is 
absolutely convergent, a ( J )  = En=O a n J  2" is called a double-real number and 
we write a c  = a ( J  = i), a H =  a ( J  = e). If the SAVGF line element is written as 

ds  2 = f ( d t  - to dqb) 2 - f - l [e2V(dz  2 + dp 2) + i 32 d~b] (1) 
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then the SAVGF equations can be reduced to the double matrix form (Zhong, 
1988; Gao and Zhong, 1992, 1996) 

Op[pM-~(J)OpM(J)] + Oz[pM-l(J)OzM(J)] = 0 (2a) 

M*(J) = M(J), Mr(J)  = M(J), det M(J) = _ j 2  (2b) 

where M(J) is a 2 • 2 double matrix function of p and z. Equation (2b) 
implies that M(J) can be written as 

M(J) = El(j) Elz _ j2F(j) ] (3) 

in terms of two double-real functions F(J) and El(J). If a double solution 
M(J) of equation (2) is given, then, we can obtain via equation (3) a pair of 
dual SAVGF solutions for equation (1) as follows: 

(f, co) = (Fc, VFc(Elc)), (f, &)= (T(Fz), Elz) (4) 

where the NK transformations T, V are defined as 

T: F ---> T(F) = p/F 

V: F, f~ --) VF(I~) = I ~ (OzEl dp - O,El dz) (5) 

Let 8M(J) = otQ(J) denote an infinitesimal symmetry transformation 
of equations (2), where et is an infinitesimal real parameter and Q(J) a double 
matrix function of p and z. Similar to Papachristou and Harrison (1994), if 
we set ~ ( J )  = M-l(J)Q(J) and define two double linear operators Dp(J) 
and Dz(J) by 

Dp(J) = p(0p + [M-~(J)OpM(J),-]) 

Dz(J ) = p(O z + [M-l(j)c3zM(J), .]) (6) 

then the general symmetry condition for equation (2a) can be stated as 

OpDp(J)dP(J) + OzDz(J)rb(J) = 0 (7) 

and equation (2b) requires that 

Q*(J) = a(J), Or(J) = a(J), tr ~ ( J )  = 0 (8) 

Furthermore, through direct calculations we find that the double operator 
identity 

[Dp(J), Dz(J)] = Dz(J ) (9) 
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is satisfied and that equation (2a) is equivalent to the double operator equation 

[Dp(J), Op] + [Dz(J), Oz] + Op = 0 (10) 

Now, similar to Zhong (1990), we introduce a so-called double ordinary- 
complex, single-valued 2 • 2 matrix function ~(h;  J)  = ~(p, z, h; J)  of 
p, z, and an ordinary-complex parameter h, i.e., ~(h;  J)  has the form 

�9 (h; J)  = A(K; J)  + iB(K; J)  (11) 

where A(h; J), B(h; J) are both double-real matrix functions when h is 
restricted to R (real numbers). Then we consider the following double lin- 
ear system: 

1 
Dp(J)~lv(h; J) - 2XOx~(h; J)  = ~ Ozatr(h; J) 

1 
Dz(J)~(h; J)  = - K  0p~(h; J) (12) 

and from equations (9) and (10) we obtain the following result. 

Proposition 1. The linear system (12) is integrable for ~(h;  J)  if M(J) 
is a solution of equation (2a). �9 

Moreover, we demand further that at'(h; J)  be analytic in a deleted 
neighborhood D around the origin of the h-plane. From equation (11), the 
meaning of the analyticity of ~(h;  J)  is clear. Thus we expand ~(h;  J) into 
a Laurent series in D 

~ ( h ; J )  = ~ hnd/<n)(J) (13) 
n = - O o  

1 ~ dk 
~(n)(j) ~(n)(p, z; J)  = ~ / _ L  ~ ~(h;  J)  (14) 

where L, lying entirely in D, is a positively oriented, simple closed contour 
around h = 0. Substituting equation (13) into (12), we obtain 

[Dp(J) - 2n]~n)(J) = 0z~ ~+l)(J) 

Dz(J)t~(n)(J) = - -~p l [ / (n+ l ) ( J ) ,  n = 0 ,  -I-1, "1-2 . . . . .  ( 1 5 )  

Equations (15) can be regarded as Bacldund transformations relating ~(n)(j) 
and ~<n+l)(j) and depending parametrically on M(J). From (15) we have the 
following result. 
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Proposition 2. t~")(J) (n = 0, ___ 1, ___2 . . . .  ) is a double infinite sequence of 
conserved charges for equation (2a). Moreover, O~0)(j) satisfies the symmetry 
condition (7), hence 

~M(J) = aQ(J) = ecM(J)t~t~ (16) 

is a symmetry of equation (2a). �9 

In order to obtain symmetries of the SAVGF equations, the infinitesimal 
transformation (16) has to satisfy the further condition (8). First of all, we 
see that the operators Do(J), Dz(J ) defined by equations (6) are double-real, 
so the double Lax pair (12) is compatible with the constraints 

tr ~(X; J) = 0, ~(X*; J)* = ~(X; J) (17) 

The second constraint in (17) is equivalent to the condition B(J) = 0 in (11). 
Therefore, for our purpose we seek traceless solutions of (12) which take 
double-real values when h is restricted to the real axis of the complex plane. 
In addition, if M(J) satisfies equation (2a), so does Mr(J). Consequently, if 
Mr(J) = M(J) and ~M(J) = aQ(J) is a symmetry, then so is ~M(J) = 
aQr(J)  as well as ~M(J) = ot(Q(J) + Qr(j)). Thus from equations (16) and 
(15) we have the following result. 

Proposition 3. For a known solution M(J) of equations (2a) and (2b) and 
a solution of (12) which satisfies constraints (17), the double transformation 

o~ 
[M(J)+(X; J) + J)M(J)] (18)  M(J) = 

is a double-real infinitesimal symmetry transformation leaving equations (2a), 
(2b) invariant in form. 

Proof Let 

1 
-~  [M(J)*(h; J )  + +r(X; J)M(J)] Q(J) = ~ i  L 

Then from equations (2b) and (17) it is easily verified that the conditions 
Qr(j) = Q(j)  and tr(M-l(J)Q(J)) = 0 are satisfied. To prove the reality of 
Q(J), we observe that from (17), (2b), and the expression for Q(J) w e  have 

- 1 ~  dh* 
Q(J)* = ~ /  L, - ~  [M(J)~(h*; J )  + ~ r (h , ;  J)M(J)] (19) 

where L* is the complex conjugate contour of L. Noticing the analyticity of 
�9 (h; J )  in the annular belt D above, we can select L* and L to be reversely 
oriented. Setting ~ = h*, we find that (19) becomes 
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- (-2ari 1)2 ~ d~ Q ( J ) *  3L - -  [M(J)~([; J)  + ~r([ ;  J)M(J)] 

= Q ( J )  

By this condition the corresponding transformations give us real physical 
solutions of the SAVGE �9 

The results above are all double; when J = i, they reduce to the results 
given by Papachristou and Harrison (1994); when J = e, they are new. 
However, we find that the SAVGF equations have more symmetries. To this 
end, we introduce a double dual transformation d(J) as in Zhong (1990). 
Considering (3), we define d(J) by 

1 
d(J): M(J) --) ,tVl(J) = ~-!-'F(J) h(J) h2(J) - j2p2(j),] 

~(J) = p/F0) ,  l~(J) = 32 f -~PVZ(j ) [0z~0) d p -  Opl~()) dz] (20) 

where the "o" denotes the imaginary unit commutation operation 

o: j ~ ) ,  t = r  ~ = i  (21) 

It can be verified that if M(J) is a solution of equations (2a) and (2b), so is 
/17/(J). Thus from equations (6) and (12) we have the corresponding/)p(J), 
Dz(J), and another linear system 

1 0?i,(• j )  Dp(J)~(h; J) - 2XOx~(h; J)  = 

1 
Dz(J)~t(h; J) = - ~  Op~t(h; J)  (22) 

It should be pointed out that M(J) and M(J) give the same SAVGF solutions, 
but Dp(J) 4= Dp(J) and IDz(J ) 4= Dz(J), which lead to the important result 
that the linear systems (22) and (12) are different, i.e., ~(h ;  J)  and ~(X; J) 
satisfy different equations (Zhong, 1990) and provide different symmetries 
and conserved charges. Similar to the preceding discussions, we can also 
expand ~(k;  J)  as 

= 

1 dk 

Hence, we  have the fol lowing result. 

n = O, ---1, +__2 . . . .  (23) 
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Proposition 4. d~(n)(J) (n = 0, -+ 1, ---2 . . . .  ) in equation (23) is a double 
infinite sequence of conserved charges for the SAVGF equations and 

J) + ~M(J) =- aif.I(J) = ~ i  L (24) 

is another double-real infinitesimal symmetry transformation leaving equa- 
tions (2a) and (2b) invariant in form. �9 

Propositions 2-4 show that, for each given double solution of equations 
(2a) and (2b), we can obtain four infinite sequences of conserved charges 
and four infinitesimal symmetry transformations simultaneously. So we say 
the results are multiple, a special case of which (take J = i in Propositions 
2 and 3) gives the result of Papachristou and Harrison (1994). The multiplicity 
of the present result reflects the fact that the SAVGF have more symmetries 
than previously expected, which was pointed out in Zhong (1990) in a different 
context. Taking exponential mappings of these symmetric algebras and giving 
some multiple groups of finite symmetric transformations will be investigated 
in a future paper. 

Finally, for contrast and to show the use of the above multiple method, 
we give an example which extends directly the example of Papachristou and 
Harrison (1994) into a multiple form. Let ~(0)(j) = t~(0)(j) = go be a traceless 
real, constant matrix, and Mo(J) a given double solution of (2) [e.g., one of 
the double solutions given in Zhong (1985) or Gao and Zhong (1992, 1996)]; 
then from equation (15) and Propositions 2 and 4 we obtain the corresponding 
multiple conserved charges of equation (2a): 

~j(1)(j) = [X(J), go] (25a) 

$")(J) = [~(J), go] (25b) 

t~(2)(J) = [r(J), go] + l [x(J) ,  [X(J), go]] (26a) 

~(2)(j) = [ir go] + �89 [3~(J), go]] (26b) 

etc., where X(J) is the double potential of (2), defined by OpX(J) = 
-pM~l(J)OzMo(J),  OzX(J) = pM ff l(J)OpMo(J), and satisfying the equation 

O(O2oX(J) + O~X(J)) - apX(J) + [OzX(J), OoX(J)] = 0 (27) 

while Y(J) is the potential of equation (27), defined by 

aoY(J) = �89 X(J)] - pazX(J) 

azY(J) = �89 X(J)] + pOpX(J) - 2X(J) 

and with similar expressions for X(J) and ~'(J) [cf. equation (20)]. Also, from 
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Propositions 3 and 4 we can obtain the corresponding multiple infinitesimal 
symmetric transformation of  equations (2a) and (2b) as 

~M(J) = ot[Mo(J)go + gr Mo(J)] (28a) 

~M(J) = a[/l~/0(J)g0 + gr/17/(J)] (28b) 

Upon taking J = i in equations (25), (26a), and (28a) one recovers the result 
given in Papachristou and Harrison (1994). However, the other results above 
are new in spite of the fact that O(0)(j) and ~(o)(j) are taken to be the same. 
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